A Unified Analysis Approach for LMS-based Variable Step-Size Algorithms

نویسنده

  • Muhammad Omer Bin Saeed
چکیده

The least-mean-squares (LMS) algorithm is the most popular algorithm in adaptive filtering. Several variable step-size strategies have been suggested to improve the performance of the LMS algorithm. These strategies enhance the performance of the algorithm but a major drawback is the complexity in the theoretical analysis of the resultant algorithms. Researchers use several assumptions to find closed-form analytical solutions. This work presents a unified approach for the analysis of variable step-size LMS algorithms. The approach is then applied to several variable step-size strategies and theoretical and simulation results are compared. Index Terms – Variable step-size, least-mean-square algorithms

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non Stationary Noise Removal from Speech Signals using Variable Step Size Strategy

The aim of this paper is to implement various adaptive noise cancellers (ANC) for speech enhancement based on gradient descent approach, namely the least-mean square (LMS) algorithm and then enhanced to variable step size strategy. In practical application of the LMS algorithm, a key parameter is the step size. As is well known, if the step size is large, the convergence rate of the LMS algorit...

متن کامل

The Wavelet Transform-Domain LMS Adaptive Filter Algorithm with Variable Step-Size

The wavelet transform-domain least-mean square (WTDLMS) algorithm uses the self-orthogonalizing technique to improve the convergence performance of LMS. In WTDLMS algorithm, the trade-off between the steady-state error and the convergence rate is obtained by the fixed step-size. In this paper, the WTDLMS adaptive algorithm with variable step-size (VSS) is established. The step-size in each subf...

متن کامل

Image Restoration with Two-Dimensional Adaptive Filter Algorithms

Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...

متن کامل

Iterative-Promoting Variable Step-size Least Mean Square Algorithm For Adaptive Sparse Channel Estimation

Least mean square (LMS) type adaptive algorithms have attracted much attention due to their low computational complexity. In the scenarios of sparse channel estimation, zero-attracting LMS (ZA-LMS), reweighted ZA-LMS (RZA-LMS) and reweighted -norm LMS (RL1-LMS) have been proposed to exploit channel sparsity. However, these proposed algorithms may hard to make tradeoff between convergence speed ...

متن کامل

The stability of variable step-size LMS algorithms

Variable step-size LMS (VSLMS) algorithms are a popular approach to adaptive filtering, which can provide improved performance while maintaining the simplicity and robustness of conventional fixed step-size LMS. Here, we examine the stability of VSLMS with uncorrelated stationary Gaussian data. Most VSLMS described in the literature use a data-dependent step-size, where the step-size either dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1501.02487  شماره 

صفحات  -

تاریخ انتشار 2015